
Week 12 - Monday



 What did we talk about last time?
 Generics











 Storing data is a fundamental part of programming
 The Java Collections Framework (JCF) provides a rich set of 

libraries for storing data in different ways
 It is the Java counterpart of the Standard Template Library (STL) 

provided for C++
 The JCF provides many interfaces that are implemented by 

particular classes (or you can write classes to implement them too)
 COMP 2100 focuses on implementing many of these classes, but 

you should rarely implement them yourself in the real world
 Why reinvent the wheel?
 Especially when the wheel has been very well tested



 Collection Parent interface of most containers
 Iterable A collection that can be iterated over
 List A collection that contains items in an order
 Queue A collection that supports FIFO operations
 Set A collection of unordered objects
 Map A collection of (key, value) pairs



 LinkedList List implementation using a linked list
 ArrayList List implementation using a dynamic array
 Stack FILO data structure
 Vector Like an ArrayList, but thread-safe
 HashSet Set implementation using a hash table
 TreeSet Set implementation using binary search trees
 HashMap Map implementation using a hash table
 TreeMap Map implementation using binary search 

trees



 Collections
 sort()
 max()
 min()
 replaceAll()
 reverse()

 Arrays
 binarySearch()
 sort()



 Often, you will need to keep ordered lists of things
 This functionality is built into Python
 In Java, you need to use a library:
 Interface:
 List<E>

 Common implementing classes:
 ArrayList<E>
 LinkedList<E>



 The List<E> interface is one of the biggest you'll ever see
 Here are a few important methods in it

Returns Method Description

boolean add(E element) Adds element to the end of the list

void add(int index, E element) Adds element before index

boolean addAll(Collection<? extends E> collection) Adds everything from collection to this list

void clear() Removes everything from this list

boolean contains(Object object) Returns true if this list contains object

E get(int index) Return the element at index

int indexOf(Object object) Returns the first index where something that 
equals object can be found

boolean isEmpty() Returns true if the list is empty

boolean remove(int index) Remove the element at index

E set(int index, E element) Set the item at location index to element

int size() Returns the size of the list



 As you will learn (or have learned) in COMP 2100, 
ArrayList uses an array inside to store datay
 When you need more space, it makes a new array and copies all the 

old stuff into the new array
 LinkedList uses a (wait for it) linked list to store the data
 In principle, LinkedList is faster for lots of unpredictable 

adds and removals
 Especially adds and removals at the beginning of the list

 In practice, ArrayList is almost always faster
 Modern machines are really good at ripping through arrays 



 ArrayList and LinkedList do have a few methods that the other one 
doesn't have

 However, you almost always want to treat them like a List
 It's a very common practice to store the class in a List variable
 Then, if you decide that you really wanted an ArrayList instead of a 
LinkedList, you only have to change one thing

List<Wombat> wombats = new LinkedList<Wombat>();  // Change to ArrayList?
Wombat walter = new Wombat("Walter");
wombats.add(walter);
wombats.add(new Wombat("Wilma"));
wombats.add(new Wombat("Winona"));
System.out.println("Size: " + wombat.size());
if(wombats.contains(walter))

System.out.println("We've got Walter!");



 Create an ArrayList of String values to hold
 Prompt the user for a positive integer
 From 1 up to the number they enter, add the String equivalent 

of that number to the list
 Exceptions:
 If the number is divisible by 3, add Fizz to the list instead
 If the number is divisible by 5, add Buzz to the list instead
 If the number is divisible by both, add Fizz Buzz to the list instead

 Output the list
 Example for 16:
 1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, 
Fizz, 13, 14, Fizz Buzz, 16



 There are n prisoners standing in a circle, about be executed
 The executions are carried out starting with the kth person, 

and removing every successive kth person going clockwise 
until no one is left

 Prompt the user for n and k
 Determine where a prisoner should stand in order to be the 

last survivor
 For example, if n = 5 and k = 2, the order of executions would 

be [1, 3, 0, 4, 2] (assuming 0-based numbering)
 Hint: Use a list and repeatedly remove indexes







 Sets
 Maps



 Start Project 4
 Get your teams figured out immediately!

 Keep reading Chapter 18


	COMP 2000
	Last time
	Questions?
	Project 4
	Exam 2 Post Mortem
	Java Collections Framework
	Java Collections Framework
	Container interfaces
	Container classes
	Tools
	List<E> interface
	List<E> methods
	ArrayList vs. LinkedList
	Using the List interface
	List practice 1 (Fizz Buzz)
	List practice 2 (a real job interview question)
	Quiz
	Upcoming
	Next time…
	Reminders

