
Week 12 - Monday

 What did we talk about last time?
 Generics

 Storing data is a fundamental part of programming
 The Java Collections Framework (JCF) provides a rich set of

libraries for storing data in different ways
 It is the Java counterpart of the Standard Template Library (STL)

provided for C++
 The JCF provides many interfaces that are implemented by

particular classes (or you can write classes to implement them too)
 COMP 2100 focuses on implementing many of these classes, but

you should rarely implement them yourself in the real world
 Why reinvent the wheel?
 Especially when the wheel has been very well tested

 Collection Parent interface of most containers
 Iterable A collection that can be iterated over
 List A collection that contains items in an order
 Queue A collection that supports FIFO operations
 Set A collection of unordered objects
 Map A collection of (key, value) pairs

 LinkedList List implementation using a linked list
 ArrayList List implementation using a dynamic array
 Stack FILO data structure
 Vector Like an ArrayList, but thread-safe
 HashSet Set implementation using a hash table
 TreeSet Set implementation using binary search trees
 HashMap Map implementation using a hash table
 TreeMap Map implementation using binary search

trees

 Collections
 sort()
 max()
 min()
 replaceAll()
 reverse()

 Arrays
 binarySearch()
 sort()

 Often, you will need to keep ordered lists of things
 This functionality is built into Python
 In Java, you need to use a library:
 Interface:
 List<E>

 Common implementing classes:
 ArrayList<E>
 LinkedList<E>

 The List<E> interface is one of the biggest you'll ever see
 Here are a few important methods in it

Returns Method Description

boolean add(E element) Adds element to the end of the list

void add(int index, E element) Adds element before index

boolean addAll(Collection<? extends E> collection) Adds everything from collection to this list

void clear() Removes everything from this list

boolean contains(Object object) Returns true if this list contains object

E get(int index) Return the element at index

int indexOf(Object object) Returns the first index where something that
equals object can be found

boolean isEmpty() Returns true if the list is empty

boolean remove(int index) Remove the element at index

E set(int index, E element) Set the item at location index to element

int size() Returns the size of the list

 As you will learn (or have learned) in COMP 2100,
ArrayList uses an array inside to store datay
 When you need more space, it makes a new array and copies all the

old stuff into the new array
 LinkedList uses a (wait for it) linked list to store the data
 In principle, LinkedList is faster for lots of unpredictable

adds and removals
 Especially adds and removals at the beginning of the list

 In practice, ArrayList is almost always faster
 Modern machines are really good at ripping through arrays

 ArrayList and LinkedList do have a few methods that the other one
doesn't have

 However, you almost always want to treat them like a List
 It's a very common practice to store the class in a List variable
 Then, if you decide that you really wanted an ArrayList instead of a
LinkedList, you only have to change one thing

List<Wombat> wombats = new LinkedList<Wombat>(); // Change to ArrayList?
Wombat walter = new Wombat("Walter");
wombats.add(walter);
wombats.add(new Wombat("Wilma"));
wombats.add(new Wombat("Winona"));
System.out.println("Size: " + wombat.size());
if(wombats.contains(walter))

System.out.println("We've got Walter!");

 Create an ArrayList of String values to hold
 Prompt the user for a positive integer
 From 1 up to the number they enter, add the String equivalent

of that number to the list
 Exceptions:
 If the number is divisible by 3, add Fizz to the list instead
 If the number is divisible by 5, add Buzz to the list instead
 If the number is divisible by both, add Fizz Buzz to the list instead

 Output the list
 Example for 16:
 1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11,
Fizz, 13, 14, Fizz Buzz, 16

 There are n prisoners standing in a circle, about be executed
 The executions are carried out starting with the kth person,

and removing every successive kth person going clockwise
until no one is left

 Prompt the user for n and k
 Determine where a prisoner should stand in order to be the

last survivor
 For example, if n = 5 and k = 2, the order of executions would

be [1, 3, 0, 4, 2] (assuming 0-based numbering)
 Hint: Use a list and repeatedly remove indexes

 Sets
 Maps

 Start Project 4
 Get your teams figured out immediately!

 Keep reading Chapter 18

	COMP 2000
	Last time
	Questions?
	Project 4
	Exam 2 Post Mortem
	Java Collections Framework
	Java Collections Framework
	Container interfaces
	Container classes
	Tools
	List<E> interface
	List<E> methods
	ArrayList vs. LinkedList
	Using the List interface
	List practice 1 (Fizz Buzz)
	List practice 2 (a real job interview question)
	Quiz
	Upcoming
	Next time…
	Reminders

